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1. Introduction 

The standard approach to modeling transport-based semiconductor devices such as transistors, 

charge-coupled devices, etc. (1) begins with analysis of the device response under open-circuit 

conditions in the output circuit—i.e., with either an open source or an open drain contact. In the 

absence of lateral transport from a source to drain, these devices can be described by one-port 

circuits. In the case of field-effect transistors (FETs), the lack of direct current (dc) gate current 

makes the transistor essentially a capacitor, which greatly simplifies the full two-port device 

equivalent circuit. More importantly, the open-circuit response lets us find the charge density  

in the channel as a function of gate voltage. Knowledge of  is sufficient to determine many 

other fundamental features of the transistor characteristics, for example the transistor’s 

alternating current (ac) input impedance. 

The approximate description of the aforementioned transistor can be formulated by first 

analyzing a purely capacitive structure in which a monolayer of graphene is embedded in the 

dielectric layer of a simple parallel-plate capacitor. This approach to modeling is especially 

fruitful in the case of graphene-based transistor structures such as the one shown in figure 1 (2), 

which shows a graphene device structure in current use. Unlike a normal field-effect transistor, 

this structure includes two gates, a top gate and a bottom (back) gate, both of which control the 

channel charge density . 

               

Figure 1.  Dual-gate graphene FET structure. 
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Since graphene is ambipolar, both electrons and holes are present in the channel and contribute 

to the current; hence,  must include both species of carrier. The back gate electrode makes it 

possible to ―dope‖ the FET channel n- or p-type by electrostatically generating the appropriate 

―inversion layers‖ using MOSFET terminology. 

In a series of papers (3–5), Meric et al. specify the ―total‖ charge density  by the following 

empirical expression: 

      V V C V V C V Vgst gst gst gstgsb gsb gsb gsb


           


, (1) 

where  and V Vgst gsb
 are voltages applied to the top and back gates, respectively. This 

expression incorporates a peculiarity exhibited by graphene films: the existence of a ―minimum 

conductivity‖ in the graphene channel (6), apparently associated with ambipolarity. Meric et al. 

argue in (3–5) that this minimum conductivity corresponds to a minimum charge density, 


, in 

the channel. The expression equation 1 contains five fitting parameters: the minimum charge 

density 


, the capacitances per unit area  and C Cgst gsb
 between the two gates and the 

monolayer, and threshold gate voltages 0 0 , V Vgstgsb
 at which the minimum charge density 


 

is reached as the back and top gates are varied separately. 

The fact that this expression has a minimum at some voltage obscures the fact that neither the 

number of electrons nor the number of holes has such a minimum. It, therefore, sidesteps much 

of the discussion of ambipolar transport. However, as we shall see, this issue must be addressed 

for the graphene-loaded capacitor. 

2. Modeling Methodology 

A rigorous expression for the channel charge density  V Vgst gsb
   can be obtained by 

modeling the multilayer structure shown in figure 2. This structure, which is related to figure 1 

by a clockwise rotation of 90, consists of a graphene monolayer located at the interface between 

two different dielectrics (chosen to be SiO
2

 and HfO
2

 by Meric et al.), with dielectric constants 

1
 and 

2
 . There are two electrodes that act as gates, a back gate on the left-hand dielectric and a 

top gate on the right-hand dielectric. When voltages V
gb

 and Vgt  are applied to these gates, the 

internal potential energy    U x qV x   between them (where q is the charge of a single 

electron/hole) is a piecewise-linear function of the distance x through the capacitor along an axis 

from the back gate to the top gate. When the graphene layer is uncharged,  U x  consists of two 
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straight line segments with a jump in slope at the interface between the dielectrics, due to the 

differing dielectric constants of the layers. A charge  on the graphene layer causes a further 

change in the slope. Let us write  U x  as follows: 

  

       ,
2 2

          ,
2 2

L L
U R x x d

gb
U x

L L
U S x x dgt

    
      

    
 

             

, 

where the left electrode is at 
2

L
x   , the right electrode is at 

2

L
x   , and d is the position of 

the graphene monolayer. In this expression, U qV
gb gb

   is the value of the potential energy at 

2

L
x    andU qVgt gt   is its value at 

2

L
x   , while R and S are constants to be determined. 

At the monolayer, we have two boundary conditions: 

(1) Continuity of    at U x x d : 

 
2 2 2 2

L L L L
U S d U R d U R d S dgt Ggb

       
                

       
, 

where U U UgtG gb
   . 

(2) A jump in the derivative of    at U x x d , determined by the Poisson equation  

          2' '
2 1 2 1

d dU
x q x d U d U d q S R q p n

dx dx
              , 

where p and n are the 2D hole and electron (number) densities in the monolayer. 
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Figure 2.  Graphene-loaded capacitor with a positive bias on the top gate. 

Let 
1 22 2

L L
d d

   
         

   
. Then solving these two equations for B and C gives 

  

 

 

1 2              ,
2 2 2 2

1 2                    ,
1 2 2 2

L L L
U U d q p n x x dggb

U x
L L L

U U d q p n x x dggt

       
                      

 
                           

. 

At x = d we find that 

    
2 21 2

1 22 2 4

L L L q
U d d U d U d p ngtgb

     
                      

. 

Let 1

2

C
gsb L

d






 and 2

2

Cgst L
d






 be the capacitances per unit area between the gates and 

the monolayer. Then it is easy to show that 
2

2

4

C Cgstgsb
L

d


 



 and  

 
1

1 22 2

C U C Ugst gtL L gsb gb
d U d Ugtgb C Cgstgsb


    
              
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so that 

    
2C U C Ugst gt qgsb gb

U d p n
C C C Cgst gstgsb gsb



  
 

. 

3. Carrier Statistics In Graphene 

Because both electrons and holes are simultaneously present in graphene, let us pause to discuss 

the nature of transport in a graphene FET. Although the large-scale graphene band structure is 

complex, in discussing transport we may confine our attention to the conduction and valence 

bands of the material. In addition to being two-dimensional (2-D), the bands are conical in 

shape—i.e., the energy of an electron in the conduction band is 

   2 2,E k k k kx y x yFC
   , 

while the energy of an electron in the valence band is 

   2 2,E k k k kx y x yV F
    . 

Note that these bands ―touch‖ at a single point in k-space    , 0,0k kx y  ; in the literature, this 

is referred to as the Dirac point. Contrast this to the case of an ordinary three-dimensional (3-D) 

direct-gap semiconductor, for which the energy of an electron in the conduction band is 

    
2 12 2 2, ,

2 2
E k k k k k k Ez zx y x yC Gm

C

    , 

while the energy of an electron in the valence band is 

    
2 12 2 2, ,

2 2
E k k k k k k Ez zx y x yV Gm

V

     , 

where m
C

, m
V

 are the conduction-band and valence-band effective masses.  

3.1 Zero Temperature 

The energy distribution functions for electrons and holes at zero temperature are simply 

 
   

   

fe e e F

f
Fh h h

     

     
, 
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regardless of the dimensionality of the system. The 2-D nature of the graphene band structure 

enters the problem when we consider the Fermi distribution in k-space. For a 3-D system, the 

zero-temperature electron/hole distribution is a filled sphere of radius k
F

, with k
F

 the Fermi 

wave vector. Because the electron/hole density (n or p) is the integral over this distribution, we 

find for 3-D bands that 

 

 

3
2 24

3 232 0

k
kFn Fk dk

p


  

 

 

For a 3-D electron gas, the Fermi energy measured from the bottom of the conduction band is 

given by 

2 2

2

k
F

F m
  , implying that 2/3 2/3 or n p

F
  . In contrast, the distribution at zero 

temperature for a 2-D system is a filled disk of radius k
F

. Because the electron/hole density (n or 

p) is the integral over this distribution, we find that for a 2-D system 

 

 

2
4

2
2

2 0

k
kFn Fkdk

p


  

 

 

For a typical III-V 2D electron gas, e.g., the channel of a GaAs/AlGaAs HEMT, the Fermi 

energy is again given by 

2 2

2

k
F

F m
  , implying that  or n p

F
  . In contrast to these 

―normal‖ systems, the conical nature of the band structure for a graphene layer gives 

k
F F F
   , so that    

1/2 1/2
 or n p

F F F
      . 

3.2 Nonzero Temperature 

Both carrier species are present at finite temperatures, due to the vanishing band gap. Let us 

introduce the inverse thermal energy, 
1

k T
B

  , and the usual temperature-dependent carrier 

energy distributions: for electrons we have (7) 

 
 

 

     
 

4 4 22
2 222

1

2 2 2

12 2
0 0 11

kdk
n f k d ke

e Fe

kdk udu
k n Fe F Fuk FeF Fe F F

  
  

     


 
        

    
     

, 
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where  
1

F x  is the order-1 Fermi integral. Note the factor 4, which takes into account both the 

spin degeneracy of the electrons and the presence of two ―cones‖ at different points in k-space 

with identical parameters—a case of the so-called ―valley degeneracy‖ and yet another 

peculiarity of graphene. Likewise, for holes we have (5) 

 

 
 

   
   

   

   
 

4 2
2

2

1 1
 , 1 1

1 1

1 2 2

2
0

1 1

2 2

12 2
0 1

p f k d k
h

k f k f keFh h
k k

F F F Fe e

kdk kdk
p

k k
F F F Fe e

udu
F

Fu
Fe

F F


 

 

        
        

 

 
   

        
 


  

 
     

. 

As noted in (8), the temperature dependence of ―intrinsic‖ carriers in graphene takes a peculiar 

form: since the equilibrium densities of electrons and holes are the same, the Fermi level must be 

at zero for all temperatures. Then  

 

 
 

 
 

 
 

 
 0

12

2

2

0
12

2

12

2
12

22

F

F

pnF

F

F
F

F
F

F

F

nnppn

































. 

Since  
12

2
0

1


F , we find that 

2

6 


















F

kT
pn


, i.e., the densities decrease slowly with 

decreasing temperature according to a square law, in contrast to the decrease predicted by the 

expression 















kT

G
E

i
npn

2
exp  in an ordinary semiconductor with bandgap 

G
E  and intrinsic 

carrier concentration 

2/3

2

2
2






















kT
V

m
C

m

i
n , which is exponentially rapid. 
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4. Charge Dynamics 

Assume that the back gate is shorted to the monolayer so that charge can flow between them. 

Figure 2(a) shows the case of no applied voltage, for which both the Fermi level, 
F
 , and the 

Dirac point are at the same voltage as the electrodes. Note that this situation is rather artificial 

since the Dirac point should lie within the energy gaps of both the insulator cladding layers—i.e., 

below the conduction bands (which may themselves be offset) by some ―confinement energy‖ 

determined by differences in work functions. This implies that its position will be offset relative 

to the applied voltages, as well. Because this should only cause an uninteresting dc shift in the 

device response, we will ignore it here.  

Let us now apply a negative voltage (positive Ugt ) to the top gate, thereby creating a nonzero 

potential  U x  (figure 2(b)). If the monolayer and the back gate are not connected, the field is 

nonzero everywhere, and the Dirac point is always at a potential   0U d  . However, if the back 

gate and the monolayer are connected, the applied voltage will cause charge to flow, creating a 

counterfield that increases until the Fermi level is constant and equal to U
gb

 everywhere to the 

left, resulting in the potential curve shown in figure 2(b). As a result of screening by the charge 

in the monolayer, the field in the region to the left is now zero. However, the following argument 

shows that the left-hand field is actually nonzero—i.e., the screening will be incomplete. This is 

true for the following reason: as the charge on the monolayer increases, the counter-field drives 

the potential at the monolayer (and, hence, the Dirac point) downward. But the charge added or 

subtracted to the monolayer also drives the Fermi level away from the Dirac point, as shown in 

figure 2(c). Eventually 
F
  reaches zero when enough electrons are drained out of the 

monolayer, leaving it with a positive hole charge. However, the Fermi level and the potential are 

no longer the same, due to the kinetic energy  inherent in the filled Fermi sea. Since the charge 

that caused the original change in the discontinuity in the voltage derivative is the same charge 

that produces the Fermi level displacement, it can be calculated by virtue of the relation between 

the Fermi level and the monolayer charge density: 

   0U d
F
      

The same argument holds for holes. Figure 3(a) shows the case of no applied voltage, for which 

both the Fermi level 
F
  and the Dirac point are again at the same voltage as the electrodes. 

Applying a positive voltage (negative Ugt ) to the top gate creates a nonzero potential  U x  

(figure 3(b)). If the monolayer and the back gate are not connected, the field is nonzero 

everywhere and the Dirac point is always at a potential   0U d  . Connecting the back gate and 

the monolayer causes charge to flow, creating a counterfield that drives the Fermi level upward 
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until it equals U
gb

 everywhere to the left, resulting in the potential curve shown in figure 3(b). 

Again, as the charge on the monolayer increases, the counter-field drives the potential at the 

monolayer (and, hence, the Dirac point) upward and drives the Fermi level away from the Dirac 

point, as shown in figure 3(c). 
F
  becomes zero when enough electrons are added to the 

monolayer, leaving it with a negative electron charge. Again, the Fermi level and the potential 

are no longer the same, due to the kinetic energy inherent in the filled Fermi sea. The added 

charge can be calculated by virtue of the relation between the electron Fermi level and the 

monolayer charge density.  

 

Figure 3.  Graphene-loaded capacitor with a negative bias on the top gate.  

4.1 Zero Temperature 

When 0U U Ug gt gb
    , figure 2 clearly shows that  U d  —i.e., the monolayer is 

charged with holes. At T = 0 there are no thermal electrons in the monolayer, and so 

 
1/2

p
F

    , which gives  

  
2

1/2
( ) 0

C U C Ugt gt qgb gb
U d p p

F C C C Cgt gtgb gb



       
 

. 

  

Metal 
top 
gate 

1 

 

Metal 
back 
gate 

graphene 

x = d x = L/2 x = L/2 

SiO2 

2 

HfO2 

F 
 
U = U gb 

U = U gt 

U = U gt 

metal 

metal 

graphene 

F 

1 Metal 
back 
gate SiO2 
 
U = U gb 

2 

HfO2 

Metal 
top 
gate 

x = L/2 x = L/2 x = d 

metal 

metal 

graphene 

F 

1 Metal 
back 
gate SiO2 
 
U = U gb 

2 

HfO2 

U = U gt 

Metal 
top 
gate 

x = d x = L/2 x = L/2 

    (a)                                       (b)                                       (c) 
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From the last result we can solve for p to obtain 

 

2
1 2p A B A
 

     
, 

where 

               
2 22

FA C C B C U C Ugt gt gtgb gb gb
q q

  
    . 

In contrast, when 0U U Ug gt gb
     we clearly have ( )U d  —i.e., the monolayer is 

charged with electrons. At T = 0 there are now no holes in the monolayer, and so 

 
1/2

n
F

     , and  

  
2

1/2
( ) 0

C U C Ugt gt qgb gb
U d n n

F C C C Cgt gtgb gb



        
 

, 

from which we can solve for n to obtain 

 

2
1 2n A A B
 

     
. 

4.2 Nonzero Temperature 

At finite temperatures, both carrier species are present due to the vanishing band gap. Let us 

introduce the inverse thermal energy, 
1

k T
B

  , and the temperature-dependent carrier 

distributions previously introduced. With both charges present, we write the charge density 

  

 
    2

2 1 1

q
q p n F F

F

      

  

. 

Note that at low temperatures, we have 

 
 

 

 
 

2
2 1 12

0
2 2

2
2 1 12

0
2 2

e n

F
F

e p

F
F


  
                    


  

                        

, 
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which recovers the zero-temperature result. Once more we can write 

 

 
   

2 2
1 12

q
F F U

C Cgt gb
F

      
 

  

, 

where 
C U C Ugt gt gb gb

U
C Cgt gb






 is an ―average‖ potential with respect to the dielectric 

capacitances. Once this expression is solved numerically for the Fermi energy, this energy can be 

used to find n and p separately:  

 
 

   

 
   

2

12

2

12

p F p U

F

n F n U

F

  

  

  

  

. 

Figure 4 is a plot of the Fermi level versus back-gate voltage for the following parameters (2–4): 

dielectric layers: 

SiO
2

 layer width:   61 nm 

SiO
2

 dielectric constant (
1
 ): 3.9 

HfO
2

 layer width:   253 nm 

HfO
2

 dielectric constant (
1
 ): 16 

graphene layer 

temperature:    300 K 

Fermi velocity:   81. 10  cm/s  

In figure 5, the corresponding electron and hole densities are plotted versus the back gate 

voltage. Note the changeover from electron to hole conduction at a back gate voltage of about  

5 V. 
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Figure 4.  Fermi level versus back gate voltage Vbg. 
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(a)  

(b)  

Figure 5.  Electron and hole densities versus back gate voltage Vbg. 

5. Nonlinear Response and Varactor Action 

To find the capacitance of a graphene-loaded capacitor at finite temperatures, we need its charge-

voltage relation. This follows from the relation between the Fermi level and the voltage:  

 

 
   

2 2
1 12

q
F F U

C Cgt gb
F

      
 

  

. 
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Writing this in dimensionless form gives 

 

   

     

 

1 1

 , 
1 1

1

F F U

z U z F z F z f z

z f

        
 

              
 

  

, 

where 

 

2 2

2

q

C Cgt gb
F

  


  

. Assume that a dc voltage is applied to the back gate of the 

varactor and a single-frequency ac component is applied to its top gate, i.e.,  

 
 

 
0

cos
0 1cos

1

U U C Cgb gb gt
U U U t

C C C CU U t gt gtgt gb gb

 

     

     

. 

Let 

                Z cos cos
0 0 1 1

C Cgb gt
U U t t

C C C Cgt gtgb gb

            
 

, 

where 
1 0
   . Since the net charge per unit area is 

 

 
           

2 1 1

1 12

q
q p n F F C C U C C zgt gtgb gbq q

F

               
  

  

, 

we can find the response once we know the function  z  . 

The inversion of the implicit function relation    1 1
z F z F z       

 
 can be done by 

power series. First, we write  0
z a A Z  , i.e., the dc and ac parts of z are formally separated. 

Then, assuming that the function  A Z  is small compared to the dc component 
0

a , we have the 

following Taylor series expansion: 

 

 

                 

           

0

1 12 3
' '' '''

0 0 0 0 02 6

1 1 14 5 6
0 0 024 120 720

Z f z

z a A Z f z f a A Z f a A Z f a A Z f a

iv v viA Z f a A Z f a A Z f a

    

      

   

 

The derivatives of  f z  are given in the appendix, which also contains mathematical details of 

the calculation. Expanding the function  A Z  as a power series in Z with unknown coefficients 
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and matching coefficients on both sides of the expression  0
Z f z    leads to an expression 

for the function  z   in powers of  , which can then be rewritten as a Fourier series for the 

charge density of the form 

  
6

cos

0

z c m t
m

m

   


. 

This in turn can be inserted into the charge density expression to give the varactor response: 

      
61

cos cos
0 10 1

2

C C c c t c m tgt gb mq m

 
                

    
 

The lowest-frequency nonlinear effect is a shift in the operating point—i.e., the self-biasing 

effect. The ―true" ac nonlinearities start with second-harmonic generation, as measured by the 

coefficient 
2

c . 

Figures 6a–6e illustrate the variation of the induced surface charge density versus ac voltage at 

the second through sixth harmonic frequencies for an operating-point voltage 
0

V  2 V. It is 

worth noting that the charges at the even harmonics are considerable larger than those at the odd 

harmonics¸ despite the antisymmetrical shape of the overall charge-voltage curve. The 

explanation for this is the peculiar shape of that curve at large voltages, which is asymptotically 

quadratic for both signs of the voltage, but with a negative coefficient in the negative direction 

and a positive coefficient in the positive direction to ensure the antisymmetry. As to the numbers, 

since current density is the time derivative of the charge density and the harmonic densities are 

measured in nanocoulombs per square centimeter, we can cautiously infer that a 21 cm capacitor 

driven at a frequency of 10 MHz could generate milliamps of ac current. 

 

Figure 6a.  2
nd

 harmonic surface charge density vs. ac voltage. 
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Figure 6b.  3
nd

 harmonic surface charge density vs. ac voltage. 

 

Figure 6c.  4
th

 harmonic surface charge density vs. ac voltage. 
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Figure 6d.  5
th

 harmonic surface charge density vs. ac voltage. 

 

Figure 6e.  6
th

 harmonic surface charge density vs. ac voltage. 
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6. Conclusions 

The graphene system possesses four unusual physical features: 

 two-dimensionality 

 ambipolarity 

 zero band gap 

 a conical 2-D band structure 

all of which impact the response of any device based on graphene. For this reason, analogies 

with other devices without all of these features can be extremely misleading. Thus, treating the 

graphene as if it were 3-D alters the quantum statistics, while the conical shape of the band 

structure (which can occur in 3-D systems, e.g., InSb) has specific implications for the energy 

density of states and, therefore, the charge-voltage relation. The unusual feature of ambipolarity 

complicates the discussion even more. 

The analysis given here is of limited value as a guide to the time-dependent behavior of the 

device because of its quasi-dc nature: since changes in charge density cannot be instantaneous, 

but rather are limited by the RC time constant of the graphene material, the real device response 

must include discussion of the mobility of carriers in the channel, which is known to be 

determined by substrate material (i.e., the cladding dielectrics in this capacitor structure), as well 

as defect and phonon scattering in the graphene layer itself. 

A further limitation on the varactor analysis is the power-series treatment of the charge-voltage 

relation. Fermi integrals have always been notoriously hard to deal with mathematically: pre-

computer calculations tended to founder on the inability to match power series and asymptotic 

series for these integrals due to the ―elbow bend‖ that is so apparent in their plots. This means 

that the nonlinear response of a device whose physics requires their use will only be well-

described by global computations. Such computations will be the subject of future research. 
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Appendix.  Varactor Calculations 

The derivatives of the function  f z  are 

 

     

 

 
 

 
 

 
 

 

 
 

 

' 1 ln 1 ln 1

1
''

1

''' 2
2

1

1
2

3
1

2 4 1
2

4
1

3 211 11 1
2

5
1

z zf z e e

ze
f z ze

ze
f z

ze

zeiv zf z e
ze

z ze e
v zf z e

ze

z z ze e e
vi zf z e

ze

       
 


 



 




 



 
  



  
 



 

Let us expand the function  A Z  in a power series in Z with unknown coefficients: 

 

 

   

 

 

2 3 4 5 6
51 2 3 4 6

2 3 4 5 '
50 0 1 2 3 4 6 0

21 2 2 3 4 5 ''
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Z a a Z a Z a Z a Z
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           
  

       
  
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  
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 

 

4
5

6 0
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61 6 2 3 4 5
51 2 3 4 6 0720

iva Z f a

vZ a a Z a Z a Z a Z a Z f a

viZ a a Z a Z a Z a Z a Z f a

  
  

       
  

        
  
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We obtain the ―operating point‖ of the varactor (not the dc component of z, due to self-bias 

effects) by numerically solving the implicit relation  0 0
f a  , which gives the first term 

0
a  

in the dc charge density. We will look for frequency multiplication up to 6  using this power 

series, i.e.,  

    
6

cos cos
0 0 1

0

Z t z c m t
m

m

               


 

where the c
m

 are unknown amplitudes. Then the charge density is 

          
61 1

cos cos
0 10 1

2

C C z C C c c t c m tgt gtgb gb mq q m

 
                    

     

 

Collecting powers of Z and matching coefficients on both sides of the expansions (with the help 

of Mathematica) lead to the following coefficient set  a
m

for the series representation of  A Z  

out to 6
th

 order in
1
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If the dimensionless voltage Z is a single frequency sinusoid, powers of Z are expressible as 

harmonics of the fundamental frequency via the relation 

  cos cosn t T n tn    

where  T xn  are Chebyshev polynomials of the first kind, the first seven of which are (8) 
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Inverting these equations allows us to express simple powers as sums of Chebyshev 

polynomials: 
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Then 
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and so 
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defines the ―conversion coefficients‖ for harmonic generation amplitudes: 
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For the dc component and linear susceptance we find explicitly that 
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The frequency multiplication signals are   1
C C cm mgt gb q

  


 with m > 1. Then 



 

26 

 
     

2 2 2 2

2 2 2

2
2

0

C Cgtq q q qgb

C C C C qgt gtgb gb
F F F

cq kT mcm m
F




    
  

       

 
     
   
 

 

are the ac charge-density components. 
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